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System Overview
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The Keeneland Initial Delivery (KID') system, which was delivered in October 2010. It is compozed of an HP SL-390 (Ariston) cluster
with Intel Westmere hex-core CPUs, NVIDLA 6GB Fermi GPUs, and a Qlogic QDR InfiniBand interconnect. Each node has two
Search hex-core CPUs and 3 GPUs, with a total of 120 nodes, 240 CPUs and 350 GPUs.

Search this site:

[ Search |

Getting a NICS Account

Pleaze see Getting Access to Keeneland for details on getting an account.

Once you have an account, you wil be added to the Keeneland Users mailing list. System-wide announcements wil broadcast to
this list.

Getting Help

Please direct any guestions to helpi@xsede.org. To ensure your guestion gets routed correctly, please include "Keeneland™ in the
subject line.

Tutorial accounts use “UT-NTNLEDU” for an allocation in the job scheduler
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The Scalable HeterOgeneous Computing (SHOC) Future Technologies Group

Benchmark Suite

https://github.com/vetter/shoc

Objectives

= Design and implement a set of performance and
stability tests for HPC systems with heterogeneous
architectures

= Implemented each test in MPI, OpenCL, CUDA to
= Evaluate the differences in these emerging programming models
= MIC to be released shortly
= QOpenACC coming soon

= Sponsored by NSF, DOE

Accomplishments

= Consistent open source software releases
= QOver 10000 downloads internationally since 2010
= Used in multiple procurements worldwide

= Used by vendors and researchers for testing, understanding

= Across diverse range of architectures: NVIDIA, AMD, ARM, Intel, even
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A. Danalis, G. Marin, C. McCurdy, J. Meredith, P.C. Roth, K. Spafford, V. Tipparaju, and J.S. Vetter,
“The Scalable HeterOgeneous Computing (SHOC) Benchmark Suite,” in Third Workshop on
General-Purpose Computation on Graphics Processors (GPGPU 2010)". Pittsburgh, 2010

This chart shows the “out of the box” improvement from NVIDIA Fermi (M2090) to Kepler (K20m). Measured using CUDA 5.0 with
an identical host system. Largest improvements observed in compute intensive workloads. Modest increases for memory bound

kernels. No increase in DP FFT, suggests CUFFT not completely optimized for Kepler in release 5.0.
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Emerging Computing Architectures

Heterogeneous processing
— Many cores
— Fused, configurable memory

Memory
— 3D Stacking
— New devices (PCRAM, ReRAM)

Interconnects
— Collective offload
— Scalable topologies

Storage
— Active storage

— Non-traditional storage architectures
(key-value stores)

Improving performance and

programmability in face of increasing

complexity
— Power, resilience

3rd Generation Intel® Core™ Processor:
'22nm Process
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New architecture with shared cache delivering more performance and
energy efficiency

Quad Core die with Intel® HD Graphics 4000 shown above
Transistor count: 1.4Billion Die size: 160mm?
** Cache is shared across all 4 cores and processor graphics
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HPC (all) computer design is more fluid now than in the past two decades.
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TH-2 System

Compute Nodes have 3.432 Tflop/s
per node

— 16,000 nodes

— 32000 Intel Xeon cpus

— 48000 Intel Xeon phis
Operations Nodes

— 4096 FT CPUs as operations nodes

Proprietary interconnect TH2
express

1PB memory (host memory only)

Global shared parallel storage is
12.4 PB

Cabinets: 125+13+24 = 162
compute/communication/storage
cabinets

— ~750 m2
NUDT and Inspur




ORNVDL’s “Titan” Hybrid System:
Cray XK7 with AMD Opteron and
NVIDIA Tesla processors

SYSTEM SPECIFICATIONS:
» Peak performance of 27.1 PF
« 245 GPU + 2.6 CPU
» 18,688 Compute Nodes each with:
* 16-Core AMD Opteron CPU
» « NVIDIA Tesla “K20x” GPU
« 32 + 6 GB memory
» 512 Service and I/0O nodes
« 200 Cabinets
« 710 TB total system memory
* Cray Gemini 3D Torus Interconnect
« 8.9 MW peak power

*’ OAK RIDGE NATIONAL LABORATORY
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4,352 ft2




Contemporary HPC Architectures

Date System Location Comp Comm Peak | Power
PF) (MW)

2009 Jaguar; Cray XT5 ORNL AMD 6¢ Seastar?2

2010 Tianhe-1A NSC Tianjin Intel + NVIDIA Proprietary 4.7 4.0
2010 Nebulae NSCS Intel + NVIDIA IB 2.9 2.6

Shenzhen
2010 Tsubame 2 TiTech Intel + NVIDIA IB 2.4 1.4
2011 K Computer RIKEN/Kobe SPARC64 VIIIfx Tofu 10.5 12.7
2012 Titan; Cray XK6 ORNL AMD + NVIDIA Gemini 10-20 9
2012 Mira; BlueGeneQ ANL SoC Proprietary 10 3.9
2012 Sequoia; BlueGeneQ LLNL SoC Proprietary 20 7.9
2012 Blue Waters; Cray NCSA/UIUC AMD + (partial) Gemini 11.6
NVIDIA

2013 Stampede TACC Intel + MIC IB 9.5 5
2013 Tianhe-2 NSCC-GZ Intel + MIC Proprietary 54 ~20

(Guangzhou)



AMD Llano's fused memory hierarchy
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Figure 3: SGEMM Performance (one, two, and four
CPU threads for Sandy Bridge and the OpenCL-
based AMD APPML for Llano’s fGPU)

K. Spafford, J.S. Meredith, S. Lee, D. Li, P.C. Roth, and J.S. Vetter, “The Tradeoffs of Fused
Memory Hierarchies in Heterogeneous Architectures,” in ACM Computing Frontiers (CF).
Cagliari, Italy: ACM, 2012.

Note: Both SB and Llano are consumer parts, not server parts.




Future Directions in Heterogeneous

Computing

 Over the next decade:
Heterogeneous computing will
continue to increase in
Importance

 Manycore

« Hardware features
— Transactional memory
— Random Number Generators
— Scatter/Gather
— Wider SIMD/AVX

* Synergies with BIGDATA,
mobile markets, graphics

* Top 10 list of features to include
from application perspective.
Now is the time!

3rd Generation Intel® Core™ Processor:

22nm Process
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New architecture with shared cache delivering more performance and
energy efficiency

Quad Core die with Intel® HD Graphics 4000 shown above
Transistor count: 1.4Billion Die size: 160mm?
** Cache is shared across all 4 cores and processor graphics
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NVIDIA Echelon System Sketch

System Interconnect

Cabinet Interconnect
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Critical Implications for

Software, Apps, Developers
The A Register’

° ege
F u n Ct I o n a I po rta b I I Ity Data Center Cloud Software MNetworks Security Policy Business Jobs Hardware Science Bootnott

Servers HPC Storage Data Networking Virtualisation Cloud Infrastructure BOFH

Performance portability

Nvidia buys Portland Group for compiler smarts

Fa St mOVi ng resea rCh’ C+f and Fcrtran to span ARM and GPU ceepie geepies
standards, products

7 Graphics chip maker Nvidia has big aspirations o get into computing proper with
ARM processors and GPU coprocessors, and its odds in its battle against archrival

I n co m pati b i I it i e S a m O ng RELATED Intel may have just gotten a lot better now that it has snapped up The Portland

Group.
STORIES P
m od e I S 1SC 2013 Mvidia The financial terms of the vaUiBmOn, which has been completed, were not disclosed.
stretches CUDA

coding to ARM PG, as the company is known,
chips was founded in 1989 and kicked out Foriran and C compilers for Intel's i860 RISC

[ ]
i processors two years later. It has been a driving force behind the development of
Rew r I te yo u r co d e eve ry Il‘sl\-fiﬁir:?eu:la parallel Fortran compilers over the years.

bigwig: Why you
REALLY wont It was tapped by Intel to do the Fortran for the ASCI Red massively parallel

5 ea rs need x86 chips ) ) o )
s00n supercomputer at Sandia Mational Laboratories in 1996 and the first machine to
break the teraflops performance barrier.

GTC 2013
J b l g\;r?tliar{uum team PGl also did the compilers for the "Red Storm" machine built by Cray using Opteron
O S ] up to sling processors from Advanced Micro Devices and the "SeaStar” interconnect developed

Python at GPU  py Cray to lash them together.

12



Performance of Directive-based GPU
Programming Models Gaining on Hand-
Written CUDA

“ PGI Accelerator “ OpenACC HMPP =« OpenMPC ™ Hand-Written CUDA
1000 512 448

*Speedups are over serial on the CPU compiled with GCC v4.1.2 using option -O3, when the largest available
input data were used.

*Experimental Platform: CPU: Intel Xeon at 2.8 GHz GPU: NVIDIA Tesla M2090 with 512 CUDA cores at 1.15GHz

14 CSMD -RIDGE



Keeneland Overview



http://keeneland.gatech.edu

Keeneland — Full Scale System

[Initial Delivery system installed in Oct 2010 ‘

¢201 TFLOPS in 7 racks (90 sq ft incl service area)
©902 MFLOPS per watt on HPL (#12 on Green500)
eUpgraded April 2012 to 255 TFLOPS

eQver 200 users, 100 projects using KID

{Full scale system installed in Oct 2012 ‘ @

*792 M2090 GPUs contribute to aggregate system peak of 615 TF Keeneland System

y Rack (11 Compute Racks)
@ (6 Chassis)
f; $6500 Chassis
(4 Nodes)
X

ProLiant SL250 G8
(2CPUs, 3GPUs)

nvinia

Xeon E5-2670 614450
E----* = 55848 GFLOPS
L65 665 GELOPS 1\% Mellanox 384p FDR Infiniband Switch
GELOPS GFLOPS 32/18 GB Full PCleG3 X16 Integrated with NICS
4 bandwidth to all GPUs Datacenter Lustre and XSEDE

J.S. Vetter, R. Glassbrook et al., “Keeneland: Bringing heterogeneous GPU computing to the computational science community,” IEEE
Computing in Science and Engineering, 13(5):90-5, 2011, http://dx.doi.org/10.1109/MCSE.2011.83.

| n UNIVERSITYof OAK &
Ge‘-’r;%.,w NICS,  TENNESSEE “RIDGE < / @ \

oLy NVIDIA
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Keeneland Full Scale System Node Architecture
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KIDS Node Architecture SL390

integrated

2UA\/ DDR3 Infiniband
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NVIDIA Fermi - M2090

e 3B transistors in 40nm

e 512 CUDA Cores

— New IEEE 754-2008
floating-point standard

e FMA

e 8xthe peak double precision
arithmetic performance over NVIDIA's
last generation GPU

— 32 cores per SM, 21k threads per
chip

CUDA Core
e 384b GDDRS5, 6 GB capacity L
— 178 GB/s memory BW
e C/M2090

— 665 GigaFLOPS DP, 6GB

— ECC Register files, L1/L2
caches, shared memory and
DRAM

. OAK
N »  'TENNESSEE N% % I



KIDS v. KFS

KID (initial) KFS (full scale)
Started Operation Nov 2010 (upgraded April 2012) October 2012
Node HP Proliant SL390 HP Proliant SL250
# Nodes 120 264
GPU M2090 (Fermi) M2090 (Fermi)
Upgraded from M2070 in Spring
2012
# GPUs 360 792
GPU Peak DP 665 665
GPU Mem BW 177 177
GPU DGEMM 470 470
Host PCI PCleG2x16 PCleG3x16
Interconnect Integrated Mellanox IB QDR Mellanox IB FDR
IB Ports/node 1 1
IB Switches Qlogic QDR 384 Mellanox FDR 384p Switch
Memory/node 24 32
Host CPU Westmere Sandy Bridge
GPU/CPU Ratio 3:2 3:2
Racks 7 13
DP Peak (GPUs only) (TF) 239 527
ceqgnl  MICS, GG e S 3 S



Heterogeneous Computing with GPUs

CPU + GPU Co-Processing
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Applications must use a mix of
programming models

Interconnection

_ Network
PCle x16 GPU 1

PCle x16

MPI
_
R S —
OpenACC, CUDA, OpenCL
Memory use, Data Fine grained Hardware
NUMA coalescing orchestration parallelism features




Keeneland Software Environment

* Integrated with NSF e Tools and programming

XSEDE options are changing
— Including XSEDE and NICS

software stack (cf. Kraken) rapidly
e Programming — HMPP, PGI, OpenMPC, R-
environments stream,
— CUDA e Additional software
~ OpenCl activities

— Compilers
e GPU-enabled

— Scalable debuggers

— Performance and
correctness tools

— Libraries — Virtualization
cogeal  NICS, RN ¥R, S O | S

NVIDIA
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A Very Brief Introduction to
Programming GPUs with
CUDA


nvidia-intro-to-cuda.pdf
nvidia-intro-to-cuda.pdf
nvidia-intro-to-cuda.pdf
nvidia-intro-to-cuda.pdf
nvidia-intro-to-cuda.pdf
nvidia-intro-to-cuda.pdf
nvidia-intro-to-cuda.pdf
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What is CUDA?

= CUDA Architecture

— Expose general-purpose GPU computing as first-class capability
— Retain traditional DirectX/OpenGL graphics performance

= CUDAC

— Based on industry-standard C
— A handful of language extensions to allow heterogeneous programs
— Straightforward APls to manage devices, memory, etc.

= This talk will introduce you to CUDA C



Introduction to CUDA C

= What will you learn today?
— Start from “Hello, World!”
— Write and launch CUDA C kernels
— Manage GPU memory
— Run parallel kernels in CUDA C
— Parallel communication and synchronization
— Race conditions and atomic operations



CUDA C: The Basics

* Terminology
» Host - The CPU and its memory (host memory)
» Device - The GPU and its memory (device memory)

Host Device

Note: Figure Not to Scale



Hello, World!

int main( void ) {
printf( "Hello, World!\n" );

return 0;

» This basic program is just standard C that runs on the host

= NVIDIA’s compiler (nvcc) will not complain about CUDA programs
with no device code

= At its simplest, CUDA C is just C!



Hello, World! with Device Code

__global  wvoid kernel( void ) {
}

int main( void ) {
kernel<<<l,1>>>();

printf ( "Hello, World!\n" );

return 0;

}

= Two notable additions to the original “Hello, World!”



Hello, World! with Device Code

__global  wvoid kernel( void ) {
}

= CUDAC keyword  global  indicates that a function
— Runs on the device
— Called from host code

» nvcc splits source file into host and device components
— NVIDIA’s compiler handles device functions like kernel ()
— Standard host compiler handles host functions like main ()

" gcc

= Microsoft Visual C



Hello, World! with Device Code

int main( void ) {
kernel<<< 1, 1 >>>();

printf ( "Hello, World!\n" );

return 0;

* Triple angle brackets mark a call from host code to device code
— Sometimes called a “kernel launch”

— We’ll discuss the parameters inside the angle brackets later
= This is all that’s required to execute a function on the GPU!

= The function kernel () does nothing, so this is fairly anticlimactic...



A More Complex Example

= Asimple kernel to add two integers:

__global  wvoid add( int *a, int *b, Int *c )

*c = *a + *Db;

» As before, gioval is a CUDA C keyword meaning
— add () Will execute on the device
— ada () Will be called from the host



A More Complex Example

= Notice that we use pointers for our variables:

__global  wvoid add( int *a, int *b, Int *c ) {
*c = *a + *Db;

}

* add () runs on the device...so a, b, and ¢ must point to
device memory

* How do we allocate memory on the GPU?



Memory Management
= Host and device memory are distinct entities

— Device pointers point to GPU memory =
= May be passed to and from host code

= May not be dereferenced from host code

— Host pointers point to CPU memory

= May be passed to and from device code

= May not be dereferenced from device code

= Basic CUDA API for dealing with device memory

— cudaMalloc (), cudaFree (), cudaMemcpy ()

— Similar to their C equivalents, malloc (), free (), memcpy ()



A More Complex Example: add ()

» Using our add () kernel:
__global  wvoid add( int *a, 1int *b, int *c )

*c = *a + *b;

}

= | et’s take a look at main ()...



A More Complex Example: main ()

int main( void ) {
int a, b, c; // host copies of a, b, c
int *dev _a, *dev b, *dev c; // device copies of a, b, cC
int size = sizeof( int ); // we need space for an integer

// allocate device copies of a, b, c
cudaMalloc ( (void**)&dev a, size );
cudaMalloc ( (void**)&dev b, size );

cudaMalloc( (void**)&dev c, size );

a = 2;

b =17;



A More Complex Example: main () (cont)

// copy linputs to device
cudaMemcpy ( dev_a, &a, size, cudaMemcpyHostToDevice );

cudaMemcpy ( dev b, &b, size, cudaMemcpyHostToDevice );

// launch add() kernel on GPU, passing parameters

add<<< 1, 1 >>>( dev a, dev b, dev c );

// copy device result back to host copy of c

cudaMemcpy ( &c, dev _c, size, cudaMemcpyDeviceToHost );

cudaFree( dev a );
cudaFree( dev b );
cudaFree( dev c );

return 0;



Parallel Programming in CUDA C

= But wait...GPU computing is about massive parallelism
= So how do we run code in parallel on the device?

= Solution lies in the parameters between the triple angle brackets:

add<<< 1, 1 >>>( dev a, dev b, dev c );

!

add<<< N, 1 >>>( dev a, dev b, dev c );

» |nstead of executing add () once, add () executed N times in parallel



Parallel Programming in CUDA C

= With add () running in parallel...let’s do vector addition

Terminology: Each parallel invocation of add () referred to as a block

Kernel can refer to its block’s index with the variable blockIdx.x

Each block adds a value from a[] and b[], storing the result in c[] :

~__global wvoid add( int *a, int *b, int *c ) {
cl[blockIdx.x] = a[blockIdx.x] + b[blockIdx.x];
}

* By using blockIdx.x to index arrays, each block handles different indices



Parallel Programming in CUDA C

= We write this code:
__global wvoid add( int *a, int *b, int *c ) {
c[blockIdx.x] = a[blockIdx.x] + b[blockIdx.x];
}

= This is what runs in parallel on the device:

Block O Block 1
c[0] = a[0] + b[O]; c[1l] = a[l] + b[1];
Block 2 Block 3

c[2] = a[2] + b[2]; c[3] = a[3] + b[3];




Parallel Addition: add ()

» Using our newly parallelized add () kernel:

__global  wvoid add( int *a, int *b, int *c ) {
cl[blockIdx.x] = a[blockIdx.x] + b[blockIdx.x];

= | et’s take a look at main ()...



Parallel Addition: main ()

#define N 512

int main( void ) {
int *a, *b, *c; // host copies of a, b, c
int *dev_a, *dev b, *dev c; // device copies of a, b, c
int size = N * sizeof ( int ); // we need space for 512 integers

// allocate device copies of a, b, c
cudaMalloc ( (void**)&dev a, size );
cudaMalloc ( (void**)&dev b, size );

cudaMalloc ( (void**)&dev c, size );

a = (int*)malloc( size );
b = (int*)malloc( size );
c = (int*)malloc( size );

random ints( a, N );

random ints( b, N );



Parallel Addition: main () (cont)

// copy inputs to device
cudaMemcpy ( dev_a, a, size, cudaMemcpyHostToDevice );

cudaMemcpy ( dev b, b, size, cudaMemcpyHostToDevice );

// launch add() kernel with N parallel blocks

add<<< N, 1 >>>( dev_a, dev b, dev c );

// copy device result back to host copy of c

cudaMemcpy( ¢, dev ¢, size, cudaMemcpyDeviceToHost );

free( a ); free( b ); free( c );
cudafFree( dev a );
cudafFree( dev b );
cudafree( dev c );

return 0O;



Review

= Difference between “host” and “device”
— Host = CPU
— Device = GPU

= Using global  to declare a function as device code

— Runs on device
— Called from host

= Passing parameters from host code to a device function



Review (cont)

= Basic device memory management
— cudaMalloc ()
— cudaMemcpy ()

— cudaFree ()

» Launching parallel kernels
— Launch N copies of add () with: add<<< N, 1 >>>();
— Used blockIdx.x to access block’s index



Threads

Terminology: A block can be split into parallel threads

Let’s change vector addition to use parallel threads instead of parallel blocks:

__global  wvoid add( int *a, int *b, int *c ) {
cl thieakldx.x ]| = al threckldx.x ] + b[ thleckldx.x ];

We use threadIdx.x instead of blockIdx.x in add ()

» main () will require one change as well...



Parallel Addition (Threads): main ()

#define N 512

int main( void ) {
int *a, *b, *c; //host copies of a, b, c
int *dev_a, *dev b, *dev c; //device copies of a, b, c
int size = N * sizeof( int ); //we need space for 512 integers

// allocate device copies of a, b, c
cudaMalloc ( (voild**)&dev a, size );
cudaMalloc ( (voild**)&dev b, size );

cudaMalloc ( (void**)&dev c, size );

a = (int*)malloc( size );
b = (int*)malloc( size );
c = (int*)malloc( size );

random ints( a, N );

random ints( b, N );



Parallel Addition (Threads): main () (cont)

// copy inputs to device
cudaMemcpy( dev_a, a, size, cudaMemcpyHostToDevice );

cudaMemcpy ( dev b, b, size, cudaMemcpyHostToDevice );

// launch add() kernel with N bhoekds

add<<< N, ¥ >>>( dev a, dev b, dev c );

// copy device result back to host copy of c

cudaMemcpy( ¢, dev ¢, size, cudaMemcpyDeviceToHost );

free( a ); free( b ); free( c );
cudafFree( dev_a );
cudaFree ( dev b );
cudaFree ( dev c );

return 0O;



Using Threads And Blocks

= We’ve seen parallel vector addition using
— Many blocks with 1 thread apiece

— 1 block with many threads
» Let’s adapt vector addition to use lots of both blocks and threads
= After using threads and blocks together, we’ll talk about why threads

= First let’s discuss data indexing...



Indexing Arrays With Threads And Blocks

» No longer as simple as just using threadIdx.x Or blockIdx.x as indices

= To index array with 1 thread per entry (using 8 threads/block)

threadIdx.x threadIdx.x threadIdx.x threadIdx.x
0(1/2|3|4(5/6(7|/0/1/12|3(4(5(/6|7|011|2|(3(4|5|6|7|0(1|2|3|4|5|6/|7
\ A | ) J
| | | |
blockIdx.x = 0 blockIdx.x = 1 blockIdx.x = 2 blockIdx.x = 3

= |f we have M threads/block, a unique array index for each entry given by
int index = threadIldx.x + blockIdx.x * M;

! | \

int index = X + Y * width;



Indexing Arrays: Example

» In this example, the red entry would have an index of 21:

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

M = 8 threads/block

[

int index

blockIdx.x = 2

threadIdx.x + blockIdx.x * M;

21;

5

+

2 * 8,




Addition with Threads and Blocks

» The blockDim.x is a built-in variable for threads per block:

int index= threadIdx.x + blockIdx.x * blockDim.x;

= A combined version of our vector addition kernel to use blocks and threads:
__global  wvoid add( int *a, int *b, int *c ) {
int index = threadIldx.x + blockIdx.x * blockDim.Xx;

c[index] = alindex] + bl[index];

= So what changes in main () when we use both blocks and threads?



Parallel Addition (Blocks/Threads): main ()

ffdefine N (2048*2048)
fdefine THREADS PER BLOCK 512

int main( void ) {
int *a, *b, *c; // host copies of a, b, c
int *dev_a, *dev b, *dev c; // device copies of a, b, c
int size = N * sizeof( int ); // we need space for N integers

// allocate device copies of a, b, c

cudaMalloc( (void**)&dev a, size );
cudaMalloc( (void**)&dev b, size );
cudaMalloc( (void**)&dev c, size );
a = (int*)malloc( size );
b = (int*)malloc( size );
c = (int*)malloc( size );

random ints( a, N );

random ints( b, N );



Parallel Addition (Blocks/Threads): main ()

// copy linputs to device
cudaMemcpy ( dev_a, a, size, cudaMemcpyHostToDevice );

cudaMemcpy ( dev_b, b, size, cudaMemcpyHostToDevice );

// launch add () kernel with blocks and threads

add<<< N/THREADS PER BLOCK, THREADS PER BLOCK >>>( dev a, dev b, dev c );

// copy device result back to host copy of c

cudaMemcpy( ¢, dev c, size, cudaMemcpyDeviceToHost );

free( a ); free( b ); free( c );
cudafFree ( dev_a );
cudafFree( dev b );
cudaFree ( dev c );

return 0O;



Why Bother With Threads?

= Threads seem unnecessary
— Added a level of abstraction and complexity
— What did we gain?

» Unlike parallel blocks, parallel threads have mechanisms to
— Communicate

— Synchronize

= Let’s see how...



Dot Product

= Unlike vector addition, dot product is a reduction from vectors to a scalar

a0—®—b0 C
a, —®— b,
a, —®—b,

—®—b3

e

c=a-b

= (ao’ a1, aZ) a3) ) (bO: b1) b2: b3)

= a0b0+a1b1+a2b2+a3b3



Dot Product

= Parallel threads have no problem computing the pairwise products:

= So we can start a dot product CUDA kernel by doing just that:

__global wvoid dot( int *a, int *b, int *c ) {
// Each thread computes a palrwise product
int temp = a[threadldx.x]@b[threadldx.x];



Dot Product

= But we need to share data between threads to compute the final sum:

e

__global  wvoid dot( int *a, int *b, 1int *c ) {
// Each thread computes a pairwise product

= althreadIdx.x] * b[threadIdx.x];

// Can’t compute the final sum
// Each thread’s copy of ‘temp’ is private



Sharing Data Between Threads

= Terminology: A block of threads shares memory called...shared memory
= Extremely fast, on-chip memory (user-managed cache)

» Declared with the  shared CUDA keyword

= Not visible to threads in other blocks running in parallel

Block O Block 1 Block 2
Threads Threads Threads




Parallel Dot Product: dot ()

= We perform parallel multiplication, serial addition:

ftdefine N 512

__global  wvoid dot( int *a, int *b, int *c ) {
// Shared memory for results of multiplication
__shared  int temp([N];
temp [threadIldx.x] = al[threadIldx.x] * b[threadldx.x];

// Thread 0 sums the pairwise products
1f( 0 == threadIldx.x ) {
int sum = 0;
for( i1nt 1 = 0; 1 < N; 1++ )
sum += temp[i];
*c = sum;



Parallel Dot Product Recap

= We perform parallel, pairwise multiplications
= Shared memory stores each thread’s result
= We sum these pairwise products from a single thread

= Sounds good...but we’ve made a huge mistake



Faulty Dot Product Exposed!

= Step 1: In parallel, each thread writes a pairwise product

ARy
LA

shared  1int temp

= Step 2: Thread 0 reads and sums the products

shared  1int temp

= But there’s an assumption hidden in Step 1...



Read-Before-Write Hazard
= Suppose thread 0 finishes its write in step 1

LT
UL

VIVIVVIVIVIVIV
» Then thread O reads index 12 in step 2

LT
VIVIVIVIVIVIV
/_ This read returns garbage!

» Before thread 12 writes to index 12 in step 1?

L]

VVIVIVIVIVIVIVIVIVIVIVIVIVIVIVY




Synchronization

= We need threads to wait between the sections of dot ():

__global  wvoid dot( int *a, int *b, int *c ) {
__shared  int temp[N];
temp[threadldx.x] = a[threadIdx.x] * b[threadIldx.x];

// * NEED THREADS TO SYNCHRONIZE HERE *
// No thread can advance until all threads
// have reached this point in the code

// Thread 0 sums the pairwise products
1f( 0 == threadIdx.x ) {
int sum = 0O;
for( int 1 = 0; 1 < N; 1i++ )
sum += temp[i];
*C = sum;



~_syncthreads ()

= We can synchronize threads with the function syncthreads ()

= Threads in the block wait until all threads have hit the  syncthreads ()

Thread O ® » __ syncthreads() o >
Thread 1 » __ syncthreads () o >
Thread 2 » __ syncthreads() ° >
Thread 3 ® » _syncthreads() e >
Thread 4 *- » __ syncthreads () ° >

» Threads are only synchronized within a block



Parallel Dot Product: dot ()

__global wvoid dot( int *a, int *b, int *c ) {
shared  int temp[N];

temp [threadIdx.x] = al[threadIdx.x] * b[threadIdx.x];
___syncthreads();
1f( 0 == threadIdx.x ) {
int sum = 0;

for( int 1 = 0; 1 < N; 1i++ )
sum += temp[i];
*c = sum;

= With a properly synchronized 4ot () routine, let’s look at main ()



Parallel Dot Product: main ()

#define N 512

int main( void ) {
int *a, *b, *c; // copies of a, b, c
int *dev _a, *dev b, *dev c; // device copies of a, b, c
int size = N * sizeof ( int ); // we need space for 512 integers

// allocate device copies of a, b, c
cudaMalloc ( (void**)&dev a, size );
cudaMalloc ( (void**)é&dev b, size );

cudaMalloc ( (void**)é&dev c, sizeof( int ) );

(int *)malloc( size );

(int *)malloc( size );

c = (int *)malloc( sizeof( int ) );

random ints( a, N );

random ints( b, N );



Parallel Dot Product: main ()

// copy linputs to device
cudaMemcpy( dev_a, a, size, cudaMemcpyHostToDevice );

cudaMemcpy( dev b, b, size, cudaMemcpyHostToDevice );

// launch dot () kernel with 1 block and N threads

dot<<< 1, N >>>( dev_a, dev b, dev c );

// copy device result back to host copy of c

cudaMemcpy( ¢, dev c, sizeof( int ) , cudaMemcpyDeviceToHost );

free( a ); free( b ); free( c );
cudafFree( dev _a );
cudafFree( dev b );
cudaFree( dev c );

return 0;



Review

» Launching kernels with parallel threads
— Launch add () with N threads: add<<< 1, N >>>();
— Used threadIdx.x to access thread’s index

= Using both blocks and threads

— Used (threadIdx.x + blockIdx.x * blockDim.x) to index input/output

— N/THREADS PER BLOCK blocks and THREADS PER BLOCK threads gave us N threads total



Review (cont)

= Using shared  to declare memory as shared memory

— Data shared among threads in a block

— Not visible to threads in other parallel blocks

= Using syncthreads () as a barrier

— No thread executes instructions after syncthreads () until all
threads have reached the  syncthreads ()

— Needs to be used to prevent data hazards



Multiblock Dot Product

= Recall our dot product launch:
// launch dot () kernel with 1 block and N threads

dot<<< 1, N >>>( dev _a, dev b, dev c );
» Launching with one block will not utilize much of the GPU

= | et’s write a multiblock version of dot product



Multiblock Dot Product: Algorithm

= Each block computes a sum of its pairwise products like before:

ao _®_ bo
sum

a1 _@ b1

az _@ b2

_®_ b3

asqp ® bs1, sum
Asq3 —®— bs15
As14 —®— D514

© bs1s



Multiblock Dot Product: Algorithm

= And then contributes its sum to the final result:

ao _®_ bo
sum
a, —®—b,
a, —®—b,
a; —®— b,
C

asqp ® bs1, sum
Asq3 —®— bs15
As14 —®— D514

© bs1s




Multiblock Dot Product: dot ()

#define N (2048*2048)

#define THREADS PER BLOCK 512

__global  wvoid dot( int *a, int *b, int *c ) {
shared int temp[THREADS_PER_BLOCK];

int index = threadIdx.x + blockIdx.x * blockDim.x;

temp[threadIdx.x] = a[index] * b[index];
__syncthreads () ;
1f( 0 == threadIdx.x ) {

int sum = 0;

for( int 1 = 0; 1 < THREADS PER BLOCK; i1++ )
sum += templ[i];

AtomEcAdd{ c , sum );
}

» But we have a race condition...
= We can fix it with one of CUDA’s atomic operations


vjj
Callout
was *c += sum;


Race Conditions

» Terminology: A race condition occurs when program behavior depends upon
relative timing of two (or more) event sequences

= What actually takes place to execute the line in question: *c¢ += sum;
— Read value at address ¢ |

— Add sum to value - Terminology: Read-Modify-Write
— Write result to address ¢

= What if two threads are trying to do this at the same time?

= Thread 0, Block 0 = Thread 0, Block 1
— Read value at address ¢ — Read value at address ¢
— Add sum to value — Add sum to value

— Write result to address ¢ — Write result to address ¢



Global Memory Contention

Read-MoAdify-Write
| \

Block O Reads 0 Computes 0+3  Writes 3

sum = 3 0 0+3 = 3 3

*c += sum cl|0 0 3 3 3 7
Block 1 3 344 = 7 7
sum = 4 Reads 3 Computes 3+4 Writes 7

( J
Y
Read-Modify-Write




Global Memory Contention

Block O

sum = 3

*o += sum

Block 1

sum = 4

Read-M(?dify-Write
| \

Reads 0 Computes 0+3 Writes 3
0 0+3 = 3 3
c 0 0 0 0 3 4
0 0+4 = 4 4
Reads 0 Computes 0+4 Writes 4

{ J
Y
Read-Modify-Write




Atomic Operations

» Terminology: Read-modify-write uninterruptible when atomic

= Many atomic operations on memory available with CUDA C

" atomicAdd " atomicInc ()

()
" atomicSub () " atomicDec ()
" atomicMin () " atomicExch ()
() " atomicCAS ()

" atomicMax

» Predictable result when simultaneous access to memory required

= We need to atomically add sum to ¢ in our multiblock dot product



Multiblock Dot Product: dot ()

__global wvoid dot( int *a, int *b, int *c ) {
_ _shared  int temp[THREADS PER BLOCK];
int index = threadIdx.x + blockIdx.x * blockDim.x;

temp[threadIldx.x] = a[index] * blindex];
__syncthreads () ;

if( 0 == threadIdx.x ) {

int sum = 0;
for( int 1 = 0; 1 < THREADS_PER_BLOCK; i++ )

sum += temp[i];
atomicAdd( ¢ , sum );

= Now let’s fix up main () to handle a multiblock dot product



Parallel Dot Product:

#define N (2048*2048)

#define THREADS PER BLOCK 512

int main( void ) {
int *a, *b, *c;
int *dev_a, *dev b, *dev c;
int size = N * sizeof( int );

main ()

// host copies of a, b, c
// device copies of a, b, c
// we need space for N ints

// allocate device copies of a, b, c

cudaMalloc( (voild**)&dev a, size );
cudaMalloc( (voild**)&dev b, size );
cudaMalloc( (void**)&dev c, sizeof( int ) );
a = (int *)malloc( size );

b = (int *)malloc( size );

c = (int *)malloc( sizeof( int ) );

random ints( a, N );

random ints( b, N );



Parallel Dot Product: main ()

// copy inputs to device
cudaMemcpy ( dev_a, a, size, cudaMemcpyHostToDevice );

cudaMemcpy ( dev b, b, size, cudaMemcpyHostToDevice );

// launch dot () kernel
dot<<< N/THREADS PER BLOCK, THREADS PER BLOCK >>>( dev_a, dev b, dev c );

// copy device result back to host copy of c

cudaMemcpy ( ¢, dev ¢, sizeof( int ) , cudaMemcpyDeviceToHost );

free( a ); free( b ); free( c );
cudaFree( dev_a );
cudaFree( dev b );
cudaFree( dev _c );

return O;



Review

= Race conditions
— Behavior depends upon relative timing of multiple event sequences

— Can occur when an implied read-modify-write is interruptible

= Atomic operations
— CUDA provides read-modify-write operations guaranteed to be atomic

— Atomics ensure correct results when multiple threads modify memory



N-Body



N-Body Algorithms

* An N-body simulation e Algorithms
numerically approximates — All-pairs interactions
the evolution of a system « Computationally intense
of bodies in which each « O(N2)
body continuously * Easily parallelized
interacts with every other — Usually use some sort of
body cutoff radius and an
_ Galaxies approximation for long

range forces

~ Protein folding  Extensively studied for

— Molecular dynamics,

Materials Science decades _
— Fluid flow — Barnes-Hut, FMM, Particle-
mesh

— Global illumination (for CG)

vetter@computer.org 27




BASIC ALL-PAIRS N-BODY

Example from H. Nguyen, GPU Gems 3: Addison-Wesley Professional, 2007.

vetter@computer.org
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Basic All-Pairs N-Body

 Each body has
— Position (x, y, z)

: c m;m, | r;
sl T
el T

— Velocity (x, v, z)

m.r

— Mass E= > f=Gm- > L
— Perhaps other attributes e el
based on specific
simulation
E~Gm- Y — 00

< g N 2 1 V2
I=7=h (”[—:IH — E”)

vetter@computer.org
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Implementation Strategy

* Think of the all-pairs  Abundant parallelism:
algorithm as calculating O(N?)
eachentry f;inan NxN  « Byt requires O(N2)
grid of all pair-wise memory and needs BW
force

* Then, total force F ; (or
acceleration a ;) on
body i is obtained from
the sum of all entries in
row / (a reduction!)

* Need to improve data
reuse to increase
computational intensity

vetter@computer.org 30




Alternate Strategy: Tiles

Rather, use a tile, which is a square region of this grid
that has p rows and p columns

Only 2p body descriptions are necessary to evaluate tile
(p can be optimized to fit into fast memory)

Each row is evaluated sequentially
But all p rows can be evaluated in parallel

Sequential p Body
—_— - Descriptions
p Body
S e Descriptions |l | 1~
T - 1> o 1>
:ﬁ ."" 1> .h- 4+ >
Q. | R p Accelerations [ 1| p Updated

Accelerations
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Body-Body Force Calculation (CUDA)

mm; I ne _ mr;
8 | ||’ Fr' - Z f’f - G???,— ) z J—Iﬁ' E N G‘mi ‘|,-*Z--“.,.' 2 3 }f?

|r&. || l',;,- 1< /<N 1<j<N | r{.;. =1=1 (”t‘,H + E”)

J7 J¥=¢

a1. __device__ float3

a2. bodyBodyInteraction(floatd4 bi, float4 bj, float3 ai)

3. | I

ad . Tloat3 r;

a5, /7 r_ij [3 FLOPS]

a6 r.x = bj.x - bi.x;

a7 . r.v = bj.y - bi.y;

83 . r.z = bj.z - bi.z;

g, /f distSgr = dot(r_ij, r_ij) + EPS*2 [6 FLOPS]

18, float distSqr = r.Xx * Fr.X + r.v * r.y + r.z * r.z + EPS2;

11. Jf invDistCube =1/distSqr~(3/2) [4 FLOPS (2 mul, 1 sgrt, 1 inv)]

12. float distSixth = distSqgr *# distSqr * distSqr;

13. float invDistCube = 1.8Ff/sqrtf{distSixth);

14. Jf s =m_j * invDistCube [1 FLOP]

15. float 5= = bj.w ¥ invDistCube;

16. Jfai= ai+s*r_ij [6 FLOPS]

17. l.¥ += r.x F 5,

15. gl.y += r.v ¥ 53

19. 8l.Z += F.Z ¥ 53}

20. return ai;

21. | 3
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al.
az.
a3,
a4,
as.
a6 .
ar.
as .
a9,
18.

Evaluating a Tile

__device__ float3

tile calculation(floatd myPosition, float3 accel)

1

¥

int i;
extern _ shared  float4[] shPosition;
for (i B8; i ¢« blockDim.x; i++) {
accel bodyBodyInteraction{myPosition, shPosition[i], accel);

¥

return accel;

* Each thread will be executing this routine

e shPosition is an array in shared memory

vetter@computer.org 33



Clustering Tiles into Thread Blocks

Tiles must be sized to
balance parallelism with
data reuse

Time

Parallelism

A 4

— Enough work to keep thread

o D =

*leTeTe

units busy and hide latency

Parallelism

Reuse
t 1 1

— Grows w/ number of columns
Load shared memory and

Ba | ance synchronize at these points

— Tile size determines register
space and shared memory

vetter@computer.org
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Thread Block Execution

al. __global__ woid
az. calculate_forces(void *devX, wvoid *devA)
3. | 1
Time a4, extern __shared__ floatd4[] shPosition;
> as. floatd *global¥ = (Ffloatd *)dewk;
as., float4 *globalA = (floatd *)devA;
a7. floatd4 myPosition;
5 o ey b o s 22 o S i s g 6 8s. int i, tile;
= "7 NIRRT P R R S R R ) R PR A e 5 S 89 float3 acc = {8.8F, B.8Ff, 08.8F};
= E 18, int gtid = blockIdx.x * blockDim.x + threadldx.x;
o o R ) e ) ) () ey e e (P e e 1 e 11. myPosition = global¥[gtid];
& 7Y ST A B U B P R ) ) R R B B 12. for (1 =@, tile = @; 1 < N3 i += p, tile++) {
13. int idw = tile * blockDim.x + threadIdx.x;
14, shPosition[threadldx.x] = globalX[idx];
T T T T 15. __=yncthreads();
16. acc = tile_calculation(myPosition, acc);
17. __=syncthreads();
Load shared memory and 18. }
synchronize at these points 19. // Save the result in global memory for the integr
28, floatd accd = {acc.X, acc.y, acc.z, B.8+};
21. globalA[gtid] = accd;
22_ | 3

vetter@computer.org 35 —



Grid of Thread Blocks to Calculate All
Forces

N Bodies .
e 1D grid of N/p i
®-- -t
independent thread e =] |7
blocks with p threads - e
each St =
N/p Blocks
@---}- -t
o---}- -
[ S S LR MO T RS T N
) U5 ey Bt S A K -ty
[ il il B et el et B bt wle 5
@b -pecfocdeachaaleateadacd.an S
o -t
® - >
p steps between

loads from global memory
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GFLOPS

Performance Effects

204 i N=16K
o 187 L <
" - - — i N=4K
a
g 1504 126 169 174 176 380 —8— N=1K
&
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Caveat: This is the most simple
version of n-body

Barnes-Hut e A common component of
Fast Multipole Method many of these parallel
Particle Mesh, PPPE methods for computing

, _ long-range forces is the 3-
Neutral Territory (Hybrid) D FFT for solving the

— Integration step Poisson equation on a 3-D
parallelized by assigning mesh

particles to processors
according to a partitioning
of space

— Force computation step
parallelized by pairs across
processors but may be
unrelated to particle-
processor assignments
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OpenCL (by way of CUDA)
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Basic Differences

e terminology
® syntax
e API calls
e compilation
CUDA OpenCL
e use compiler to build kernels e build kernels at runtime
e Clanguage extensions (nvcc) e API only; no new compiler
— also a low-level driver-only API — API calls to execute kernel
e buffer offsets allowed e buffer offsets not allowed
e pointer traversal allowed e must use pointer arithmetic
cequal  mICS, TR ¥Wie S [ S

NVIDIA



Terminology

CUDA OpenCL

Thread Work-item
Thread block Work-group
Global memory Global memory
Constant memory Constant memory
Shared memory Local memory
Local memory Private memory

: i OAK »‘
cegmal  NICS, G ¥ S [ o

~ National Laboratory
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Function Qualifiers

CUDA OpenCL

global___ ___kernel

device

Variable Qualifiers

CUDA OpenCL

___constant____ ____constant
___device global
___shared_ ___local

= THE 0; OAK l 4 %
ceqmal  miICS, HuEH W S [ <o
o/, e

ANninml Laboratory



Example API Calls

CUDA Version OpenCL Version
clEnqueueReadBuffer/
LEEETEn) clEnqueueWriteBuffer
cudaMalloc clCreateBuffer
(compile-time call to nvee) clBuildProgram

clSetKernelArg +

(direct kernel invocation) clEnqueueNDRangeKernel

ceqga)  MICS, CHEE ¥ S ) o

PN NVIDIA
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Kernel Code Example

CUDA OpenCL

__global__ void __kernel void
vectorAdd(const float *a, vectorAdd(__global const float *a,
const float *b, __global const float *b,
float * c) __global float * c)
{ {
// Vector element index // Vector element index
int nIndex = blockIdx.x * int nIndex = get_global_id(0);

blockDim.x + threadIdx.x;

c[nIndex] = a[nIndex] + b[nIndex]; c[nIndex] = a[nIndex] + b[nIndex];
} }
- y OAK ;
Geqle)  NICS,  i\NEssiE ‘RIDGE %A 2} N5t



Host Code Example

CUDA

float *data; // device memory allocated with cudamalloc
int value;
myfunction<<<nblocks,nthreads>>>(data, value)

OpenCL

cl_mem data;

int value;

cl_kernel k = clCreateKernel(prog, “myfunction”, 0);
clsetkernelArg(k, 0, sizeof(cl_mem), (void*)&data);
clsetkernelArg(k, 1, sizeof(int), (void*)&int);
clEnqueueNDRangeKernel (cmdQueue, k, 1, 0, &worksize, 0, 0, 0, 0);

; s 4 OAK
cegmial  NICS, TR Wi S [

National Laborstory NVIDIA
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Other Resources

e OpenCL:
— http://www.khronos.org/opencl/

e OpenCL for CUDA programmers:

— http://developer.amd.com/zones/openclzone/
programming/pages/portingcudatoopencl.aspx

— http://developer.download.nvidia.com/OpenCL/
NVIDIA OpenCL JumpStart Guide.pdf

e Conversion tools:

— CU2CL
— Swan
- s " OAK A
Gegroia | NICS,  {ENNESSEE RIDGE NVIDIA 2
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http://developer.amd.com/zones/openclzone/programming/pages/portingcudatoopencl.aspx
http://developer.amd.com/zones/openclzone/programming/pages/portingcudatoopencl.aspx
http://developer.amd.com/zones/openclzone/programming/pages/portingcudatoopencl.aspx
http://developer.amd.com/zones/openclzone/programming/pages/portingcudatoopencl.aspx
http://developer.amd.com/zones/openclzone/programming/pages/portingcudatoopencl.aspx
http://developer.download.nvidia.com/OpenCL/NVIDIA_OpenCL_JumpStart_Guide.pdf
http://developer.download.nvidia.com/OpenCL/NVIDIA_OpenCL_JumpStart_Guide.pdf
http://developer.download.nvidia.com/OpenCL/NVIDIA_OpenCL_JumpStart_Guide.pdf
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Host Motherboard Layout

DDR DRAM
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Discrete GPU PCB Layout

GDDR DRAM

Image from http://techreport.com/articles.x/14168
OAK
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CUDA, OpenCL Optimization

e Minimize data transfers across PCl-Express bus
— Very expensive: e.g. 5GB/s PCle versus 100GB/s for device
— Can be asynchronous; overlap communication with computation

e Coalesce memory reads (and writes)

— ensure threads simultaneously read adjacent values

— effectively uses GPU memory bandwidth

data: GOOD: GPU can read values for
v v all threads in a single chunk

thread: t0 t1 t2 t3

data: BAD

thread: t0 t1 t2 t3

thread: tQ t1 £
i - OAK
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CUDA, OpenCL Optimization

e Shared memory is fast, local to a group of threads

e \When access patterns are irregular:

— perform coalesced reads to shared memory
— synchronize threads

— then access in any pattern

thread

thread tO t1 t2 t3 t4 t5 t6 t7

ceqmal  mICS, MK e S [ S
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CUDA, OpenCL Optimization

e Unroll loops to minimize overhead

— GPU kernel compilation not yet mature here
e Execute more than one item per thread

— further increase computational density

— remember: maintain coalescing
e e.g. stride by grid size

*Many presentations, whitepapers detail these aspects of optimization.
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Accelerating Compiler Optimization

e Similar concepts apply

e Relying on compiler for a lot:

— coalescing: you might be able to help by modifying
your array layouts

— unrolling, tiling, shared memory: some compilers
are better than others, some offer unroll+jam
pragmas, some offer shared memory pragmas

— minimizing data transfers: most offer directives to
specify allocation and transfer boundaries
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OPTIMIZATIONS ON HETEROGENEOUS
SYSTEM NODES

eorgi e o OAK X
ceqmal  NICS, iR ¥ S [ o

Piona Labors NVIDIA



56

Keeneland’s Multi-GPU Nodes

e KIDS is a dual-I/O-hub node architecture
— Allows full PCle bandwidth to 3 GPUs and 1 NIC

PCle x8

Infiniband

PCle x16 GPU

PCle x16 GPU

CPU
PCle x16 GPU

ceqpa| mics, ey Wi S [
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Sharing GPUs on Keeneland

e Simultaneous PCle bandwidth to all 3 GPUs

=$=min <-mean max

GB/sec
(] = [ ] (8] I~ (U] o ~J
| | | | | | |

1 2 3 4
Tasks per GPU
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NON-UNIFORM MEMORY ACCESS
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Non-Uniform Memory Access

e Node architectures result in Non-Uniform Memory
Access (NUMA)

— Point-to-point connections between devices
— Not fully-connected topologies
— Host memory connected to sockets instead of across a bus

=) : OAK ,
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NUMA Can Affect GPUs and Network Too

Older node architecture with single I/O hub but no NUMA effects between CPU and GPU/HCA

PCle

Infiniband

Tesla 1U
PCle

wIR GPU (3GB) .

4oUMS 31Dd

wra GPU (3GB)

KIDS node architecture with dual I/0 hub but NUMA effects

integrated

PCle x8

Pclexde

[ ),
PCle x16 GPU 1

B

: OAK
Georgia & ICS mUNIVERSITYof @
Tech N »  'TENNESSEE N'%’I“‘D‘% R

DL160
Single I/0 Hub
PCle switch connects GPUs

SL390
Dual I/O Hub
No PCle switch
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NUMA Control Mechanisms

e Process, data placement tools:
— Tools like libnuma and numactl

— Some MPI implementations have NUMA controls
built in (e.g., Intel MPI, OpenMPI)

e numactl usage:
numact]l [--interleave=nodes] [--preferred=node]
[--physcpubind=cpus] [--cpunodebind=nodes]
[--membind=nodes] [--localalloc] command
numactl [--show]

humact]l [--hardware]
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numactl on KIDS

[meredith@kid107]S numactl -show

policy: default

preferred node: current

physcpubind: 01 2 34567 8 9 10 11
cpubind: 0 1

hodebind: 0 1

membind: 0 1
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“NUMA Nodes” on KIDS nodes

Physical
CPUs 0-5

CPU
Node
0

CPU
Node

PaN

Physical
CPUs 6-11

= e UNIVERSITYof
Qoo 9“& ICS TENNESSEE ‘RIDGE

ational Laboratory

Infiniband

GPUo

GPU 1

GPU 2
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numactl on KIDS

[meredith@kid107]S numactl --hardware

availlable: 2 nodes (0-1)
node 0 si1ze: 12085 MB
hode 0 free: 11286 MB
node 1 size: 12120 MB
nhode 1 free: 11648 MB
node distances:
nhode 0) 1

O: 10 20

1: 20 10
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OpenMPI with NUMA control

Use mpirun to execute a script:
mpirun ./prog_with_numa.sh

In that script (prog_with_numa.sh) launch under numactl:

1t [[$OMPI_COMM_WORLD_LOCAL_RANK == "0"]]
then

numactl --membind=0 --cpunodebind=0 ./prog -args
else

numact]l --membind=1 --cpunodebind=1 ./prog -args

i
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How much Does NUMA Impact
Performance?

e Microbenchmarks to focus on individual node
components

e Macrobenchmarks to focus on individual
operations and program kernels

e Full applications to gauge end-user impact

Spafford, K., Meredith, J., Vetter, J. Quantifying NUMA and Contention Effects in Multi-
GPU Systems. Proceedings of the Fourth Workshop on General-Purpose Computation on
Graphics Processors (GPGPU 2011). Newport Beach, CA, USA.

Meredith, J., Roth, P., Spafford, K., Vetter, J. Performance Implications of Non-Uniform
Device Topologies in Scalable Heterogeneous GPU Systems. IEEE MICRO Special
Issue on CPU, GPU, and Hybrid Computing. October 2011.
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Data Transfer Bandwidth

e Measured bandwidth of data transfers between CPU socket 0 and the GPUs

integrated

Infiniband

PCle x8

—--GPU #0 -=-GPU #1 or #12 —+—GPU #0 -=-GPU #1 or#2
b 7 -
5 - 6 -
5 ]
4 ]
i w 4
o 3 - >
) 0 3 -
2 5 .
1 CPU-to-GPU 1 GPU-to-CPU
0 I T ] 0 T T |
1 16 256 4096 65536 1 16 256 4096 65536
Size (KB) Size (KB)
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SHOC Benchmark Suite

e \What penalty for “long” mapping?
e Rough inverse correlation to computational intensity

68

Test Units Correct NUMA  Incorrect NUMA % Penalty
SGEMM  GFLOPS 535.640 519.581 3%
DGEMM GFLOPS 239.962 230.809 4%

FFT GFLOPS 30.501 26.843 12%
FFT-DP  GFLOPS 15.181 13.352 12%

MD GB/s 12.519 11.450 9%
MD-DP GB/s 19.063 17.654 7%
Reduction GB/s 5.631 4.942 12%

Scan GB/s 0.007 0.005 31%

Sort GB/s 1.081 0.983 9%

Stencil seconds 8.749 11.895 36%
Table 3: SHOC Benchmark Results
cegwal  NICS, HWNEE Wi S [4) S
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Full Applications

e With one application task, performance penalty for using incorrect mapping (e.g.,
CPU socket 0 with GPU 1)

e With two application tasks, performance penalty for using mapping that uses “long”
paths for both (e.g., CPU socket 0 with GPU 1 and CPU socket 1 with GPU 0)

LAMMPS DCA++ HF GROMACS LAMMPS DCA++ HF
(1task) (1task) (1task) (2tasks) (2 tasks)

4.5%
4.0% 3.9% 3.8%
3.5%
3.0%
2.5%
2.0%
1.5%
1.0%
0.5%
0.0%

. - 2 OAK , x
gl  MIcS, MR e S 3 S
el

NUMA Mis-map penalty
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HPL Linpack

e Runtimes on KIDS under 3 pinning scenarios

=+=0-1-free -m=0-1-1 =+=NoPinning

D | | [ |
0 16 32 48 64

Number of Nodes {3 GPUs per Nude]
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Goge g'a& ICS TENNESSEE

70



NUMA and Network Traffic

e Have to worry about not only process/data
placement for CPU and GPU, but also about
CPU and Infiniband HCA

integrated

RAM  ERBLiE ATk Infiniband

odl 1/O

B U pclexic6 [
RAM

ol PCle x16

. DDR3

RAM CPU 1
RAM

QPI PCle x16
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Thread Splitting

e Instead of 1 thread that controls a GPU and
issues MPI calls, split into two threads and bind

to appropriate CPU sockets

(loweer is better) (higher ishetter)

— [ ] ]
o i o w
1 |

U
o = [ (%] =Y un an ~J
| 1 1 | 1 1

16MB MPI transfer latency (us)
64MB PCle transfer rate {GB/sec)

o
]
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“NUMA Nodes” on KFS nodes

Physical
CPUs 0-7

N
CPU Infiniband

Node
0 GPUo

@ GPU 1

Node
1 GPU 2

PaN

Physical
CPUs 8-15
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KIDS/KFS NUMA Penalty: OpenCL Bandwidth

g

7.0 GB/s

6.0 GB/s

5.0GB/s -

4.0GB/s -

3.0GB/s -

2.0GB/s -

1.0 GB/s -

0.0GB/s -

Download

KIDS

me UNIVERSITYof
& NICS,  TENNESSEE

Download

ational Laboratory

NVIDIA

B Same NUMA Node
B Cross NUMA Node
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KIDS/KFS NUMA Penalty: OpenCL Latency

g

11.0 ps
10.0 ps

9.0 us -
8.0 us -
7.0 us -
6.0 us -
50us
4.0 us -
3.0us
2.0 us -
10pus -
0.0 us -~

Download

KIDS

e UNIVERSITYof
NICS,  TENNESSEE

Download

NVIDIA

B Same NUMA Node
B Cross NUMA Node




KIDS/KFS GPU Transfer Performance

e New Sandy Bridge CPUs (on KFS) have PCle directly attached

e Bandwidth

— Absolute performance is similar
— Download NUMA penalty virtually eliminated
— Upload NUMA penalty somewhat reduced

e |atency
— Absolute latency improves
— Download/upload NUMA penalty reduced
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GPU DIRECT
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GPU Direct

e Transferring data between GPUs in a scalable
heterogeneous system like KIDS is expensive

— Between GPUs in different nodes
— Between GPUs in the same node
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The Problem with Inter-Node Transfers

e Datais in device memory of GPU on one node,
needs to be transferred to device memory of GPU

on another node

e Several hops:

— Data transferred from GPU memory to GPU buffer in
host memory

— Data copied from GPU buffer to

IB buffer in host memory 7
— Data read by IB HCA using I i

RDMA transfer g
— Repeat in reverse on other end e 5

http://www.mellanox.com/pdf/whitepapers/TB_GPU_Direct.pdf

OAK
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GPUDirect

e NVIDIA and Mellanox developed an approach for allowing
others to access the GPU buffer in host memory

e Eliminates the data copy from GPU buffer to IB buffer

— Eliminates two system memory data copy operations (one on
each end)

— Keeps host CPU out of the data path
— Up to 30% performance improvement (according to NVIDIA)

R System
PU Memory
A
|
Chip
set l

http://www.mellanox.com/pdf/whitepapers/TB_GPU_Direct.pdf
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GPUDirect 2.0: Improving Transfer

Performance Within a Node

e Similar problem when transferring data from one GPU
to another within the same node

e Old way:
— Copy data from GPU 1 to host memory
— Copy data from host memory to GPU 2

e New way:

— Copy data from GPU 1 to GPU2 without host CPU
involvement

e Integrates well with Unified Virtual Addressing feature
(single address space for CPU and 1+ GPUs)

e Available since CUDA 4.0
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Current GPUDirect support on KIDS

e Currently active on KIDS for GPU1<~GPU2
— 2.8 GB/s normally, 4.9 GB/s with GPUDirect

OAK
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Using GPUDirect

e General strategy:
— GPU-GPU copies

e Use cudaMemcpy with two device pointers
e Enable peer access in CUDA to allow direct GPU-GPU

— even allows inter-GPU access within CUDA kernels

— Host-device copies
e Allocated any host memory as pinned in CUDA

e CUDA driver puts this in user-pageable memory,
virtual address space

— May need to “export CUDA_NIC_INTEROP=1"
for InfiniBand to share this with CUDA
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Checking GPUDirect for GPU1 < GPU2

1. Are devices using Tesla Compute Cluster driver?
e cudabDeviceProp propl, prop2;
e cudaGetDeviceProperties(&propl, 1);
e cudaGetDeviceProperties(&prop2, 2);
e check propl.tccDbriver==1and prop2.tccDriver==1

2. Do devices support peer access to each other?
° int access2froml, accesslfrom?;
e cudabDeviceCanAccessPeer(&access2froml, 1, 2);
. cudabDeviceCanAccessPeer(&accesslfrom2, 2, 1);
e check access2froml==1 and accesslfrom2==1
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Enabling GPUDirect for GPU1 < GPU2

3. Enable device peer access both directions:

« cudaSetDevice(l);
« cudabDeviceEnablePeerAccess(2,flags); //flags=0
« cudaSetDevice(2);
« cudabDeviceEnablePeerAccess(1,flags); //flags=0

4. Example: send data directly from GPU2 to GPU1:
- float *gpuldata, *gpu2data;
« cudaSetDevice(l);
« cudaMalloc(&gpuldata, nbytes);
« cudaSetDevice(2);
« cudamalloc(&gpu2data, nbytes);

« cudamemcpy(gpuldata, gpu2data, cudaMemcpybDefault);
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MPI AND GPU TASK MAPPING

eorgi e o OAK X
ceqmal  NICS, iR ¥ S [ o

Piona Labors NVIDIA



How to combine GPUs and MPI?

e Use 1 MPI task per CPU core?

— Simplest for an existing MPI code

e particularly if they are not threaded
— Either time share GPUs ...

e performance can vary, especially with more tasks/GPU

— ... or only use GPUs from some MPI tasks

e introduce load balance problem
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How to combine GPUs and MPI?

e Use 1 MPI task per GPU? Per CPU socket?

— thread/OpenMP/OpenCL to use more CPU cores
— ratios like 3GPU:2CPU add complexity

e pinning 3 tasks to 2 CPU sockets makes using 12 cores hard
e optimal NUMA mapping may not be obvious

— can use 1 task for 2 GPUs, leave 3@ GPU idle
e with 2 1/0 hubs, bandwidth is probably sufficient

— can leave CPU cores idle
e for codes that match GPUs well, this can be a win
e recent NVIDIA HPL results show benefits of this approach
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How to combine GPUs and MPI?

e Use 1 MPI task per compute node?

— With work, can be highly optimized:
e Best use of GPUDirect transfers (GPU-GPU, GPU-NIC)
e Can use numactl library within the task

— Very complex — must handle:
e multiple GPUs in one task
e offload work for all CPU cores

e NUMA mapping is a challenge
— especially for automated threading like OpenMP

_ N OAK '
e NICS, FiNNEcorE RIDGE <3 ("I”] W

NVIDIA

L

[

89






Bonus Slides



